7th International Conference on Sustainable Solid Waste Management 26-29 June 2019, Heraklion, Crete Island, Greece

Extraction of Humic substances from residual mixed Municipal Solid Waste

Alessio Lieto*, Daniela Zingaretti, Francesco Lombardi

Department of Civil Engineering, University of Rome "Tor Vergata"

Humic substances are present in all organic ecosystems, i.e. oceans, rivers, lakes and top soils due to biodegradation of dead organic matter

Humic Acids (HA) are a mixture of weak aliphatic and aromatic organic acids characterized by <u>large amounts of carboxylic and phenolic groups</u>

These compound can act as:

- Chelating agents
- Ion-exchangers
- Surfactants

Based on the *Circular economy* concept, several works performed so far demonstrated the possibility of using *Humic Substances extracted from organic waste* (as the *compost*) for various purposes :

- formulation of detergents
- textile dyeing baths
- soil fertilizers and plant bio-stimulants for agriculture
- dispersants and binding agents for ceramics manufacture
- auxiliaries for soil/water remediation and enhanced oil recovery
- nanostructured materials for chemical and biochemical catalysis

Others waste materials, as the residual mixed wastes from Mechanical-Biological Treatment (**MBT waste**), could be adopted for the extraction of these substances

<u> Aim</u>

- Evaluation of the viability of extracting humic substances from **MBT wastes**
- Assessment of the operating parameters that allow to enhance the performance of the process

Experimental

- **<u>Activities</u>** Residual mixed wastes from Mechanical-Biological Treatment collected in a plant near Rome
- Extraction of humic substances from MBT wastes by changing the operating parameters
 - Waste particle dimension
 - S/L ratio
 - Extract concentration
 - Extraction time
- Extraction of humic substances from MBT wastes that underwent a further maturation phase

Methods: Humic substances Extraction

Methods: Humic substances Extraction

Operating Conditions

Test **T1:** Standard procedure commonly used for extracting organic matter from soil:

- 500 ml of NaOH (0.1 M)
- 50g of MBT Waste
- T = 65°
- Time = 4h

Effect of the variation of the operating conditions (tests **T2**, **T3**, **T4** and **T5**)

Material

All the extraction (**T1**, **T2**, **T3**, **T4** and **T5**) were performed using 3 MBT samples:

- After treatment (no maturation)
- 90 days of maturation
- 180 days of maturation

	Standard	S/L Ratio		Conctact Tim		ne
	Grinding		NaOH			
	т1	T2	тз	Т4	T5	
Pre-Treatment	No	Yes	No	No	No	
S/L Ratio [mg/l]	1:10	1:10	1:5	1:10	1:10	
NaOH Molarity [M]	0.1	0.1	0.1	0.25	0.1	
Extraction time [h]	4	4	4	4	24	

Analysis

Amounts of extracted HA

Functional groups quantification by HCI titration (HA)

CHNS-O analysis

Results: Amounts of Extracted Humic Acids

- 0.4 25 g/kg of HA extracted from the MBT waste before the maturation phase
- 21 60 g/kg of HA extracted from the MBT waste that underwent at least 90 days of further maturation
- In tests T4 and T5 higher amount of HA were extracted

T1	T2	Т3	T4	T5
Reference	Ground	S/L Ratio	NaOH molarity	Time

Results: Functional groups quantification

- · The amounts of functional groups generally decreased with the maturation
- The distribution of the functional groups in the extracted HA proved to be similar to the one of commercial HA (30% Phenolic and 70% Carboxylic groups)
- Functional groups resulted slightly less then the one extracted from commercial HA (*red column*)
- Slightly higher amounts of functional groups for tests T4 e T5

T1	T2	Т3	T4	T5
Reference	Ground	S/L Ratio	NaOH molarity	Time

Results: Spectrophotometric analyses

- Peak of absorbance near λ =280nm
- Lower absorbance than the commercial HA
- Higher absorbances for increasing maturation times

T1	T2	Т3	T4	T5
Reference	Ground	S/L Ratio	NaOH molarity	Time

Results: Aromatic content

Correlation was observed between the molar absorptivity at 280 nm of the Humic Substances (*Chin et al. '94, Peuravuori et al. '97*) and their aromaticity/molecular weight

- Aromaticity increased with the maturation
- After 180 days of maturation the aromatic content resulted comparable with commercial HA
- *Molecular Weight* from 900÷1200 [g/mol] to 1200÷1600 [g/mol] after maturation

T1	T2	Т3	T4	Т5
Reference	Ground	S/L Ratio	NaOH molarity	Time

Results: Elemental Analysis of Humic Acids

		С	н	Ν	Ο
		[%]	[%]	[%]	[%]
Τ1	0	43.80	6.11	4.12	6.13
Т1	90	36.44	4.38	5.87	8.54
Τ1	180	38.18	4.54	6.25	8.40
T2	0	48.02	5.95	6.42	8.78
Т2	90	41.17	4.91	6.88	9.39
Т2	180	41.31	5.05	6.82	8.82
Т3	0	44.18	5.67	5.15	6.84
Т3	90	32.93	4.08	5.62	8.28
Т3	180	38.19	4.77	6.70	9.04
Т4	0	47.89	5.99	6.21	7.50
Т4	90	38.66	4.67	6.11	8.11
Т4	180	38.15	4.63	6.23	8.29
Т5	0	45.40	5.62	6.25	8.71
Т5	90	39.46	4.77	6.41	9.48
Т5	180	39.53	4.72	6.55	8.70

C/N atomic ratio (biological stability))

Based on the elemental composition of the extracted Humic Acids, the following parameters were estimated:

	H/C atomic	ratio		Humifica Index	tion		Polimerizatio n Rate
	H [atom C [atom	ic%]		HI (%) = $\frac{C_{H}}{C_{orga}}$			$\frac{C_{HA}}{C_{FA}}$
(N	iemiałkowska-	-butrym et al.	,			(Be	ustamante et al., 2012
20	12)	T1	T2	T3	T4	T5	
		Reference	Ground	S/L Ratio	NaOH molarity	Time	

Results: Elemental Analysis of Humic Acids

H/C atomic ratio (degree of aromatization)

H/C atomic ratio is inversely proportional to the aromaticity of compounds:

- **H/C of 1.5 to 1.7** correspond to alicyclic hydrocarbons
- **H/C of 0.7-1.5** correspond to aromatic systems related with aliphatic chains composed of up to 10 carbon atoms

T1	T2	Т3	T4	T5
Reference	Ground	S/L Ratio	NaOH molarity	Time

Results: Elemental Analysis of Humic Acids

Humification Index

- HI increased for increasing maturation times
- Higher HI values for tests T4 e T5

- **Polymerization rate** grew with the maturation (humic structure more branched)
- Higher Polymerization rate for tests T4 e

T1	T2	Т3	Т4	Т5			
Reference	Ground	S/L Ratio	NaOH molarity	Time			

- The viability of extracting Humic substances from MBT Waste was assessed evaluating the effects of the applied operating conditions and of the material maturation
- An increase in the concentration of NaOH and in the extraction time proved to be beneficial for :
 - Growing the amounts of both extracted Humic Acids and Fulvic Acids
 - Slightly increasing the amounts of functional groups
 - Enhancing the Humification Index and Polymerization Rate of the humic acids
- The application of a further maturation phase (at least 90 days) to the MBT waste proved to enhance the chemical properties and the amount of extracted humic substances
- > In view of the reuse of the extracted substances their environmental

behaviour needs to be investigated

7th International Conference on Sustainable Solid Waste Management 26-29 June 2019, Heraklion, Crete Island, Greece

Thanks for your attention!

Department of Civil Engineering, University of Rome "Tor Vergata"